Format

Send to

Choose Destination
Phytopathology. 2002 Jan;92(1):75-80. doi: 10.1094/PHYTO.2002.92.1.75.

A Point Mutation in the Two-Component Histidine Kinase BcOS-1 Gene Confers Dicarboximide Resistance in Field Isolates of Botrytis cinerea.

Abstract

Partial DNA fragments of Botrytis cinerea field isolates encoding the putative osmosensor histidine kinase gene (BcOS1) were cloned by polymerase chain reaction amplification and the predicted amino acid sequences were compared between dicarboximide-sensitive and resistant field isolates. The predicted BcOS1p is highly homologous to osmosensor histidine kinase OS1p from Neurospora crassa including the N-terminal six tandem repeats of approximately 90 amino acids. Four dicarboximide-resistant isolates of B. cinerea (Bc-19, Bc-45, Bc-682, and Bc-RKR) contained a single base pair mutation in their BcOS1 gene that resulted in an amino acid substitution in the predicted protein. In these resistant isolates, codon 86 of the second repeat, which encodes an isoleucine residue in sensitive strains, was converted to a codon for serine. The mutation of Botrytis field resistant isolates was located on the second unit of tandem amino acid repeats of BcOS1p, whereas the point mutations of the fifth repeat of OS1p confer resistance to both dicarboximides and phenylpyrroles and also osmotic sensitivity in Neurospora crassa. These results suggest that an amino acid substitution within the second repeat of BcOS1p is responsible for phenotypes of field resistant isolates (resistant to dicarboximides but sensitive to phenylpyrroles, and normal osmotic sensitivity) in B. cinerea.

PMID:
18944142
DOI:
10.1094/PHYTO.2002.92.1.75
Free full text

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center