Format

Send to

Choose Destination
Phytopathology. 2003 May;93(5):547-55. doi: 10.1094/PHYTO.2003.93.5.547.

Ontogenic resistance to powdery mildew in grape berries.

Abstract

Berries of Vitis vinifera are reported to be susceptible to infection by Uncinula necator until soluble solids levels (brix) reach 8%, and established colonies are reported to sporulate until brix reach 15%. However, our analysis of disease progress on fruit of selected V. vinifera cultivars indicated that severity became asymptotic several weeks earlier in fruit development. When mildew-free fruit clusters of V. vinifera 'Chardonnay', 'Riesling', 'Gew├╝rztraminer', and 'Pinot Noir' were inoculated at stages ranging from prebloom to 6 weeks postbloom, only fruit inoculated within 2 weeks of bloom developed severe powdery mildew. Substantial ontogenic resistance to infection was expressed in fruit nearly 6 weeks before fruit brix reached 8% and over 2 months before they reached 15%. Rachises of 'Chardonnay' and 'Riesling' fruit clusters developed severe powdery mildew when inoculated at bloom, and disease increased steadily over the next 60 days. The rachis of fruit clusters inoculated 31 days after bloom developed only trace levels of powdery mildew. Berry weight of all four cultivars at harvest was reduced when fruit clusters were inoculated at bloom or 16 days postbloom, primarily by splitting, rotting, and dehydration of mildewed berries, but the weight of later-inoculated berries was not reduced. Inoculation of berries just as ontogenic resistance increased markedly, approximately 3 to 4 weeks postbloom, resulted in the development of inconspicuous, diffuse, non-sporulating mildew colonies on berries, sometimes associated with a network of necrotic epidermal cells. Rather than a protracted and relatively static period of berry susceptibility lasting 3 months, fruit of V. vinifera appear to acquire ontogenic resistance rapidly after fruit set. A refocusing of disease management on this critical period of high fruit susceptibility should greatly improve the efficacy of fungicides directed against powdery mildew.

PMID:
18942976
DOI:
10.1094/PHYTO.2003.93.5.547
Free full text

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center