Format

Send to

Choose Destination
See comment in PubMed Commons below
J Phys Chem A. 2008 Nov 20;112(46):11824-32. doi: 10.1021/jp806075b. Epub 2008 Oct 23.

Binding of CO, NO, and O2 to heme by density functional and multireference ab initio calculations.

Author information

1
Faculty of Chemistry, Jagiellonian University, Kraków, Poland.

Erratum in

  • J Phys Chem A. 2011 Jul 7;115(26):7871.

Abstract

Using the CASSCF/CASPT2 approach, along with several DFT methods (PBE0, B3LYP, BP86, OLYP), we have investigated the bonding of CO, NO, and O2 molecules to two model heme systems: an iron(II) porphyrin with and without an axial imidazole ligand. The experimentally available binding energies are best reproduced by the CASPT2 method and with the OLYP functional. The other functionals considered perform much worse, either severely overbinding (BP86) or underbinding (B3LYP, PBE0). Significant discrepancies between the different density functionals are observed, not only for the energetics but sometimes also for structure predictions. This confirms our viewpoint that a balanced treatment of the electronic exchange and correlation is vital to describe the weak metal-ligand bond between heme and CO, NO, or O2. The binding energies DeltaEb were split into two contributions: the so-called spin-pairing energy DeltaE sp and the "inherent" binding energy DeltaEb0, and both contributions were analyzed in terms of method and basis set effects. We have also investigated the spin density distributions resulting from the bonding of the NO molecule (a noninnocent ligand) to heme. Our analysis at the DFT and CASSCF level shows that, while various density functionals predict qualitatively very different spin distributions, the CASSCF spin populations most closely correspond to the results obtained with the pure BP86 or OLYP rather than with the hybrid functionals.

PMID:
18942804
DOI:
10.1021/jp806075b
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center