Format

Send to

Choose Destination
See comment in PubMed Commons below
Nat Struct Mol Biol. 2008 Nov;15(11):1147-51. doi: 10.1038/nsmb.1503. Epub 2008 Oct 19.

Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding.

Author information

1
Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.

Abstract

Proteolytic AAA+ unfoldases use ATP hydrolysis to power conformational changes that mechanically denature protein substrates and then translocate the polypeptide through a narrow pore into a degradation chamber. We show that a tyrosine residue in a pore loop of the hexameric ClpX unfoldase links ATP hydrolysis to mechanical work by gripping substrates during unfolding and translocation. Removal of the aromatic ring in even a few ClpX subunits results in slippage, frequent failure to denature the substrate and an enormous increase in the energetic cost of substrate unfolding. The tyrosine residue is part of a conserved aromatic-hydrophobic motif, and the effects of mutations in both residues vary with the nucleotide state of the resident subunit. These results support a model in which nucleotide-dependent conformational changes in these pore loops drive substrate translocation and unfolding, with the aromatic ring transmitting force to the polypeptide substrate.

Comment in

PMID:
18931677
PMCID:
PMC2610342
DOI:
10.1038/nsmb.1503
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Support Center