Send to

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 2008 Dec;190(24):7876-84. doi: 10.1128/JB.00874-08. Epub 2008 Oct 17.

Biosynthesis of 7-deazaguanosine-modified tRNA nucleosides: a new role for GTP cyclohydrolase I.

Author information

Department of Microbiology, University of Florida, Gainesville, FL 32611-0700, USA.


Queuosine (Q) and archaeosine (G(+)) are hypermodified ribonucleosides found in tRNA. Q is present in the anticodon region of tRNA(GUN) in Eukarya and Bacteria, while G(+) is found at position 15 in the D-loop of archaeal tRNA. Prokaryotes produce these 7-deazaguanosine derivatives de novo from GTP through the 7-cyano-7-deazaguanine (pre-Q(0)) intermediate, but mammals import the free base, queuine, obtained from the diet or the intestinal flora. By combining the results of comparative genomic analysis with those of genetic studies, we show that the first enzyme of the folate pathway, GTP cyclohydrolase I (GCYH-I), encoded in Escherichia coli by folE, is also the first enzyme of pre-Q(0) biosynthesis in both prokaryotic kingdoms. Indeed, tRNA extracted from an E. coli DeltafolE strain is devoid of Q and the deficiency is complemented by expressing GCYH-I-encoding genes from different bacterial or archaeal origins. In a similar fashion, tRNA extracted from a Haloferax volcanii strain carrying a deletion of the GCYH-I-encoding gene contains only traces of G(+). These results link the production of a tRNA-modified base to primary metabolism and further clarify the biosynthetic pathway for these complex modified nucleosides.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center