Format

Send to

Choose Destination
J Nutr Biochem. 2009 Aug;20(8):649-55. doi: 10.1016/j.jnutbio.2008.07.001. Epub 2008 Oct 16.

Use of a novel genetic mouse model to investigate the role of folate in colitis-associated colon cancer.

Author information

1
Faculty of Nutrition, Texas A&M University, College Station, TX 77843-2253, USA. r-chapkin@tamu.edu

Abstract

Inflammatory bowel disease (IBD) patients are at high risk for developing folate deficiency and colon cancer. Since it is difficult to study the subtle global and gene-specific epigenetic mechanisms involved in folate-mediated tumor initiation and promotion, we have generated genetically modified mouse models by targeting the reduced folate carrier (RFC1) and folate-binding protein (Folbp1) genes. The transgenic mice were fed semi-purified diets for 8 weeks containing either normal (2 mg) or deficient (0.1 mg folate/kg diet) levels of folate. Compound heterozygous mice (Folbp1(+/-); RFC1(+/-)) fed an adequate folate diet exhibited a reduction in plasma folate concentrations compared to heterozygous (Folbp1(+/-)) and littermate wild-type mice (P<.05). In contrast, no differences were observed in colonic mucosa. Consumption of a low folate diet significantly reduced (three- to fourfold) plasma and tissue folate levels in all animal models, although plasma homocysteine levels were not altered. In order to elucidate the relationship between folate status and inflammation-associated colon cancer, animals were injected with azoxymethane followed by dextran sodium sulphate treatment in the drinking water. Mice were fed a normal folate diet and were terminated 5 weeks after carcinogen injection. The number of high multiplicity aberrant crypt foci per centimeter of colon was significantly elevated (P<.05) in compound Folbp1(+/-); RFC1(+/-) (3.5+/-0.4) mice as compared to Folbp1(+/-) (1.9+/-0.3) and wild-type control mice (1.1+/-0.1). These data demonstrate that the ablation of two receptor/carrier-mediated pathways for folate transport increases the risk for developing inflammation-associated colon cancer.

PMID:
18926688
PMCID:
PMC2710403
DOI:
10.1016/j.jnutbio.2008.07.001
[Indexed for MEDLINE]
Free PMC Article

MeSH terms, Substances, Grant support

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center