Format

Send to

Choose Destination
Am J Hum Genet. 2008 Nov;83(5):604-9. doi: 10.1016/j.ajhg.2008.09.018.

Genetic mapping of glutaric aciduria, type 3, to chromosome 7 and identification of mutations in c7orf10.

Author information

1
Ephrata High School, Ephrata, PA 17522, USA.

Abstract

While screening Old Order Amish children for glutaric aciduria type 1 (GA1) between 1989 and 1993, we found three healthy children who excreted abnormal quantities of glutaric acid but low 3-hydroxyglutaric acid, a pattern consistent with glutaric aciduria type 3 (GA3). None of these children had the GCDH c.1262C-->T mutation that causes GA1 among the Amish. Using single-nucleotide polymorphism (SNP) genotypes, we identified a shared homozygous 4.7 Mb region on chromosome 7. This region contained 25 genes including C7orf10, an open reading frame with a putative mitochondrial targeting sequence and coenzyme-A transferase domain. Direct sequencing of C7orf10 revealed that the three Amish individuals were homozygous for a nonsynonymous sequence variant (c.895C-->T, Arg299Trp). We then sequenced three non-Amish children with GA3 and discovered two nonsense mutations (c.322C-->T, Arg108Ter, and c.424C-->T, Arg142Ter) in addition to the Amish mutation. Two pathogenic alleles were identified in each of the six patients. There was no consistent clinical phenotype associated with GA3. In affected individuals, urine molar ratios of glutarate to its derivatives (3-hydroxyglutarate, glutarylcarnitine, and glutarylglycine) were elevated, suggesting impaired formation of glutaryl-CoA. These observations refine our understanding of the lysine-tryptophan degradation pathway and have important implications for the pathophysiology of GA1.

PMID:
18926513
PMCID:
PMC2668038
DOI:
10.1016/j.ajhg.2008.09.018
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center