Send to

Choose Destination
Invest Radiol. 2008 Nov;43(11):753-61. doi: 10.1097/RLI.0b013e3181812c4c.

Four dimensional intravenous cone-beam computed tomographic subtraction angiography. In vitro study of feasibility.

Author information

Imaging Research Laboratories, Robarts Research Institute, Schulich School of Medicine, University of Western Ontario London, Canada.



We demonstrate the feasibility of 4D intravenous computed tomographic (CT) subtraction cerebral angiography using in vitro, anthropomorphic techniques.


High-resolution 3D cone-beam CT datasets (0.45 mm isotropic voxel size, 120 kVp, 90 mA) of a cadaver-derived cerebrovascular phantom, containing a saccular aneurysm, were acquired at a rate of 1 Hz for 20 seconds. A computer-controlled pump provided physiologically realistic blood-flow waveforms using a water-glycerol blood-mimicking fluid (10 mL/s mean flow). Contrast agent injected at 0.94 mL/s for 5 seconds provided a clinically realistic intravenous vascular enhancement of approximately 300 Hounsfield units. The first 4 to 5 volumes (precontrast) provided a mask dataset for volumetric subtraction. Vascular enhancement was measured in the dynamic, time-resolved, subtracted 3D angiograms. Contrast-to-noise ratio was measured in 3D source data and maximum intensity projections (MIPs). Dose measurements were made using an ionization chamber.


MIP images of the time-resolved volumetric data were of diagnostic quality, clearly showing the aneurysm dome and neck, and cerebral vessels. Dynamic flow information (contrast wash-in/wash-out) was observed, including differential opacification and draining of the anterior and posterior vasculature and the aneurysm. Contrast-to-noise ratio was measured to be in the range of 3 to 4.5 in averaged volumes, and 10.5 to 17 in the corresponding MIPs, at an effective patient dose of 2.8 mSv, with 4 cm of axial coverage.


We have demonstrated the feasibility of 4D volumetric, intravenous CT subtraction angiography, in vitro, providing time-resolved, diagnostic quality 3D datasets. We were able to show time-resolved blood-flow information and high-resolution local and global anatomic renderings, from a single 20-second scan, at acceptable x-ray dose.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wolters Kluwer
Loading ...
Support Center