Format

Send to

Choose Destination
Biomacromolecules. 2008 Nov;9(11):3208-15. doi: 10.1021/bm8007988. Epub 2008 Oct 15.

Trimethylene carbonate and epsilon-caprolactone based (co)polymer networks: mechanical properties and enzymatic degradation.

Author information

1
Institute for Biomedical Technology and Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, University of Twente, Post Office Box 217, 7500 AE, Enschede, The Netherlands.

Abstract

High molecular weight trimethylene carbonate (TMC) and epsilon-caprolactone (CL) (co)polymers were synthesized. Melt pressed (co)polymer films were cross-linked by gamma irradiation (25 kGy or 50 kGy) in vacuum, yielding gel fractions of up to 70%. The effects of copolymer composition and irradiation dose on the cytotoxicity, surface properties, degradation behavior, and mechanical and thermal properties of these (co)polymers and networks were investigated. Upon incubation with cell culture medium containing extracts of (co)polymers and networks, human foreskin fibroblasts remained viable. For all (co)polymers and networks, cell viabilities were determined to be higher than 94%. The formed networks were flexible, with elastic moduli ranging from 2.7 to 5.8 MPa. Moreover, these form-stable networks were creep resistant under dynamic conditions. The permanent deformation after 2 h relaxation was as low as 1% after elongating to 50% strain for 20 times. The in vitro enzymatic erosion behavior of these hydrophobic (co)polymers and networks was investigated using aqueous lipase solutions. The erosion rates in lipase solution could be tuned linearly from 0.8 to 45 mg/(cm (2) x day) by varying the TMC to CL ratio and the irradiation dose. The copolymers and networks degraded essentially by a surface erosion mechanism.

PMID:
18855440
DOI:
10.1021/bm8007988
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center