Send to

Choose Destination
See comment in PubMed Commons below
Langmuir. 2008 Nov 4;24(21):12547-52. doi: 10.1021/la802103t. Epub 2008 Oct 10.

Nanostructure of calcium alginate aerogels obtained from multistep solvent exchange route.

Author information

Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-ENSCM-UM2-UM1, Matériaux Avancés pour la Catalyse et la Santé, ENSCM, 8 rue Ecole Normale, 34296 Montpellier Cedex 5, France.


Ca-alginate materials were studied by small-angle X-ray scattering (SAXS) at different steps of conversion from gel to aerogel in order to determine the relation between the polymer organization at the nanoscale in the gels and the final dry aerogel. In all cases, i.e. before and after the different exchanges of solvents and after the formation of the aerogel, the SAXS patterns exhibit an asymptotic behavior at low q values (in the experimental q range 7x10(-3) up to 2.10(-2) A(-1)) close to I(q) approximately q(-1), indicative of randomly oriented rod-like scattering objects. The evolution of the diameter of such rod-like objects was thus deduced from the maxima observed on Kratky plots, i.e. I(q) q2 vs q. The results are in perfect agreement qualitatively (rod-like anisometry type of the scattering objects) and quantitatively (diameter of the rods) with direct SEM observations of the morphology of aerogels and with the results of N2 adsorption on the aerogel. This is evidence that in the chosen experimental processing conditions, the morphology of the aerogel depends on the morphology of pre-existing objects within the gel, i.e. that the structure of the aerogel provides a correct image of the structure of the parent gel.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center