Format

Send to

Choose Destination
Nature. 2008 Oct 9;455(7214):782-5. doi: 10.1038/nature07293.

High-temperature interface superconductivity between metallic and insulating copper oxides.

Author information

1
Brookhaven National Laboratory, Upton, New York 11973-5000, USA.

Abstract

The realization of high-transition-temperature (high-T(c)) superconductivity confined to nanometre-sized interfaces has been a long-standing goal because of potential applications and the opportunity to study quantum phenomena in reduced dimensions. This has been, however, a challenging target: in conventional metals, the high electron density restricts interface effects (such as carrier depletion or accumulation) to a region much narrower than the coherence length, which is the scale necessary for superconductivity to occur. By contrast, in copper oxides the carrier density is low whereas T(c) is high and the coherence length very short, which provides an opportunity-but at a price: the interface must be atomically perfect. Here we report superconductivity in bilayers consisting of an insulator (La(2)CuO(4)) and a metal (La(1.55)Sr(0.45)CuO(4)), neither of which is superconducting in isolation. In these bilayers, T(c) is either approximately 15 K or approximately 30 K, depending on the layering sequence. This highly robust phenomenon is confined within 2-3 nm of the interface. If such a bilayer is exposed to ozone, T(c) exceeds 50 K, and this enhanced superconductivity is also shown to originate from an interface layer about 1-2 unit cells thick. Enhancement of T(c) in bilayer systems was observed previously but the essential role of the interface was not recognized at the time.

PMID:
18843365
DOI:
10.1038/nature07293

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center