Format

Send to

Choose Destination
See comment in PubMed Commons below
J Cell Sci. 2008 Oct 15;121(Pt 20):3293-304. doi: 10.1242/jcs.029223.

The regulation of salt transport and blood pressure by the WNK-SPAK/OSR1 signalling pathway.

Author information

  • 1MRC Protein Phosphorylation Unit, Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK. c.j.z.richardson@dundee.ac.uk

Abstract

It has recently been shown that the WNK [with-no-K(Lys)] kinases (WNK1, WNK2, WNK3 and WNK4) have vital roles in the control of salt homeostasis and blood pressure. This Commentary focuses on recent findings that have uncovered the backbone of a novel signal-transduction network that is controlled by WNK kinases. Under hyperosmotic or hypotonic low-Cl- conditions, WNK isoforms are activated, and subsequently phosphorylate and activate the related protein kinases SPAK and OSR1. SPAK and OSR1 phosphorylate and activate ion co-transporters that include NCC, NKCC1 and NKCC2, which are targets for the commonly used blood-pressure-lowering thiazide-diuretic and loop-diuretic drugs. The finding that mutations in WNK1, WNK4, NCC and NKCC2 cause inherited blood-pressure syndromes in humans highlights the importance of these enzymes. We argue that these new findings indicate that SPAK and OSR1 are promising drug targets for the treatment of hypertension, because inhibiting these enzymes would reduce NCC and NKCC2 activity and thereby suppress renal salt re-absorption. We also discuss unresolved and controversial questions in this field of research.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk