Send to

Choose Destination
J Toxicol Environ Health A. 2008;71(22):1457-67. doi: 10.1080/15287390802329364.

Identification of genes associated with paraquat-induced toxicity in SH-SY5Y cells by PCR array focused on apoptotic pathways.

Author information

CIBER de Enfermedades Neurodegenerativas (CIBERNED), Departamento de Bioquímica y Biología Molecular y Genética, EU Enfermería y TO, Universidad de Extremadura, Cáceres, Spain.


Paraquat (PQ) (1,1-dimethyl-4,4'-bipyridinium dichloride), a widely used herbicide, has been suggested as a potential etiologic factor for the development of Parkinson's disease (PD). In this sense, understanding of the molecular mechanism underlying PQ-induced toxicity to neural cells is important for optimal use as well as for the development of new drugs. To gain insights into PQ-induced neurotoxicity, polymerase chain reaction (PCR) array analysis focused on a panel of apoptosis-related genes was performed using neuroblastoma SH-SY5Y cells. Up to 65 apoptosis-related genes were monitored. Our analysis of apoptotic process through microarray technology showed that in PQ-induced neuroblastoma SH-SY5Y cells, there is a different expression of BIK, CASP3, CASP7, CRADD, DAPK, FAS, and other related genes, in comparison to unstimulated cells. Evaluation of genes regulated differentially is essential for the development of therapeutic approaches in multifactorial diseases as PD. Our data provide a useful basis for screening candidate targets for early diagnosis and further intervention in PQ-mediated toxicity of neural cells.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center