Send to

Choose Destination
Ecology. 2008 Sep;89(9):2493-505.

Biomass rather than growth rate determines variation in net primary production by giant kelp.

Author information

Marine Science Institute, University of California, Santa Barbara, California 93111, USA.


Net primary production (NPP) is influenced by disturbance-driven fluctuations in foliar standing crop (FSC) and resource-driven fluctuations in rates of recruitment and growth, yet most studies of NPP have focused primarily on factors influencing growth. We quantified NPP, FSC, recruitment, and growth rate for the giant kelp, Macrocystis pyrifera, at three kelp forests in southern California, U.S.A., over a 54-month period and determined the relative roles of FSC, recruitment, and growth rate in contributing to variation in annual NPP. Net primary production averaged between 0.42 and 2.38 kg dry mass x m(-2) x yr(-1) at the three sites. The initial FSC present at the beginning of the growth year and the recruitment of new plants during the year explained 63% and 21% of the interannual variation observed in NPP, respectively. The previous year's NPP and disturbance from waves collectively accounted for 80% of the interannual variation in initial FSC. No correlation was found between annual growth rate (i.e., the amount of new kelp mass produced per unit of existing kelp mass) and annual NPP (i.e., the amount of new kelp mass produced per unit area of ocean bottom), largely because annual growth rate was consistent compared to initial FSC and recruitment, which fluctuated greatly among years and sites. Although growth rate was a poor predictor of variation in annual NPP, it was principally responsible for the high mean values observed for NPP by Macrocystis. These high mean values reflected rapid growth (average of approximately 2% per day) of a relatively small standing crop (maximum annual mean = 444 g dry mass/m2) that replaced itself approximately seven times per year. Disturbance-driven variability in FSC may be generally important in explaining variation in NPP, yet it is rarely examined because cycles of disturbance and recovery occur over timescales of decades or more in many systems. Considerable insight into how variation in FSC drives variation in NPP may be gained by studying systems such as giant kelp forests that are characterized by frequent disturbance and rapid rates of growth and recruitment.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center