Send to

Choose Destination
Ecology. 2008 Sep;89(9):2369-76.

Invisible floral larcenies: microbial communities degrade floral nectar of bumble bee-pollinated plants.

Author information

Estación Biologica de Doñana, CSIC, Avenida de Maria Luisa s/n, E-41013 Sevilla, Spain.


The ecology of nectarivorous microbial communities remains virtually unknown, which precludes elucidating whether these organisms play some role in plant-pollinator mutualisms beyond minor commensalism. We simultaneously assessed microbial abundance and nectar composition at the individual nectary level in flowers of three southern Spanish bumble bee-pollinated plants (Helleborus foetidus, Aquilegia vulgaris, and Aquilegia pyrenaica cazorlensis). Yeasts were frequent and abundant in nectar of all species, and variation in yeast density was correlated with drastic changes in nectar sugar concentration and composition. Yeast communities built up in nectar from early to late floral stages, at which time all nectaries contained yeasts, often at densities between 10(4) and 10(5) cells/mm3. Total sugar concentration and percentage sucrose declined, and percentage fructose increased, with increasing density of yeast cells in nectar. Among-nectary variation in microbial density accounted for 65% (H. foetidus and A. vulgaris) and 35% (A. p. cazorlensis) of intraspecific variance in nectar sugar composition, and 60% (H. foetidus) and 38% (A. vulgaris) of variance in nectar concentration. Our results provide compelling evidence that nectar microbial communities can have detrimental effects on plants and/or pollinators via extensive nectar degradation and also call for a more careful interpretation of nectar traits in the future, if uncontrolled for yeasts.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center