Format

Send to

Choose Destination
Eur J Immunol. 2008 Oct;38(10):2762-75. doi: 10.1002/eji.200737986.

Lack of galectin-3 alters the balance of innate immune cytokines and confers resistance to Rhodococcus equi infection.

Author information

1
Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil.

Abstract

Galectin-3 is a beta-galactoside-binding lectin implicated in the fine-tuning of innate immunity. Rhodococcus equi, a facultative intracellular bacterium of macrophages, causes severe granulomatous bronchopneumonia in young horses and immunocompromised humans. The aim of this study is to investigate the role of galectin-3 in the innate resistance mechanism against R. equi infection. The bacterial challenge of galectin-3-deficient mice (gal3-/-) and their wild-type counterpart (gal3+/+) revealed that the LD50 for the gal3(-/-) mice was about seven times higher than that for the gal3+/+ mice. When challenged with a sublethal dose, gal3(-/-) mice showed lower bacteria counts and higher production of IL-12 and IFN-gamma production, besides exhibiting a delayed although increased inflammatory reaction. Gal3(-/-) macrophages exhibited a decreased frequency of bacterial replication and survival, and higher transcript levels of IL-1beta, IL-6, IL-10, TLR2 and MyD88. R. equi-infected gal3+/+ macrophages showed decreased expression of TLR2, whereas R. equi-infected gal3(-/-) macrophages showed enhanced expression of this receptor. Furthermore, galectin-3 deficiency in macrophages may be responsible for the higher IL-1beta serum levels detected in infected gal3(-/-) mice. Therefore galectin-3 may exert a regulatory role in innate immunity by diminishing IL-1beta production and thus affecting resistance to R. equi infection.

PMID:
18825751
DOI:
10.1002/eji.200737986
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center