Format

Send to

Choose Destination
Cancer Sci. 2008 Nov;99(11):2327-35. doi: 10.1111/j.1349-7006.2008.00943.x. Epub 2008 Sep 22.

TS-1 enhances the effect of radiotherapy by suppressing radiation-induced hypoxia-inducible factor-1 activation and inducing endothelial cell apoptosis.

Author information

1
Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, Kyoto, Japan.

Abstract

The therapeutic effect of concurrent chemoradiotherapy with TS-1 has been confirmed in various solid tumors; however, the detailed mechanism of action has not yet been fully elucidated. In the present study, we identified hypoxia-inducible factor-1 (HIF-1) as one of the targets of TS-1 in chemoradiotherapy. In growth delay assays using a tumor xenograft of non-small-cell lung carcinoma, H441, TS-1 treatment enhanced the therapeutic effect of single gamma-ray radiotherapy (14 Gy) and significantly delayed tumor growth by 1.58-fold compared to radiotherapy alone (P < 0.01). An optical in vivo imaging experiment using a HIF-1-dependent 5HRE-luc reporter gene revealed that TS-1 treatment suppressed radiation-induced activation of HIF-1 in the tumor xenografts. The suppression led to apoptosis of endothelial cells resulting in both a significant decrease in microvessel density (P < 0.05; vs radiation therapy alone) and a significant increase in apoptosis of tumor cells (P < 0.01; vs radiation therapy alone) in tumor xenografts. All of these results indicate that TS-1 enhances radiation-induced apoptosis of endothelial cells by suppressing HIF-1 activity, resulting in an increase in radiosensitivity of the tumor cells. Our findings strengthen the importance of both HIF-1 and its downstream gene, such as vascular endothelial cell growth factor, as therapeutic targets to enhance the effect of radiotherapy.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center