Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2008 Oct 21;47(42):11062-9. doi: 10.1021/bi8012438. Epub 2008 Sep 30.

Association properties of betaB1- and betaA3-crystallins: ability to form heterotetramers.

Author information

National Eye Institute and National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.


As major constituents of the mammalian lens, beta-crystallins associate into dimers, tetramers, and higher-order complexes to maintain lens transparency and refractivity. A previous study has shown that dimerization of betaB2- and betaA3-crystallins is energetically highly favored and entropically driven. While heterodimers further associate into higher-order complexes in vivo, a significant level of reversibly associated tetrameric crystallin has not been previously observed in vitro. To enhance our understanding of the interactions between beta-crystallins, we characterized the association of betaB1-crystallin, a major component of large beta-crystallin complexes (beta-high), with itself and with betaA3-crystallin. Mouse betaB1-crystallin and human betaA3-crystallin were expressed in Escherichia coli and purified chromatographically. Their association was then characterized using size-exclusion chromatography, native gel electrophoresis, isoelectric focusing, and analytical sedimentation equilibrium centrifugation. When present alone, each beta-crystallin associates into homodimers; however, no tetramer formation is seen. Once mixing has taken place, formation of a heterocomplex between betaB1- and betaA3-crystallins is observed using size-exclusion chromatography, native gel electrophoresis, isoelectric focusing, and sedimentation equilibrium. In contrast to results previously obtained after betaB2- and betaA3-crystallins had been mixed, mixed betaB1- and betaA3-crystallins show a dimer-tetramer equilibrium with a K d of 1.1 muM, indicating that these two beta-crystallins associate predominantly into heterotetramers in vitro. Thus, while each purified beta-crystallin associates only into homodimers and under the conditions studied mixed betaB2- and betaA3-crystallins form a mixture of homo- and heterodimers, mixed betaB1- and betaA3-crystallins associate predominantly into heterotetramers in equilibrium with heterodimers. These findings suggest a unique role for betaB1-crystallin in promoting higher-order crystallin association in the lens.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Support Center