Send to

Choose Destination
See comment in PubMed Commons below
Eur J Pharmacol. 2008 Nov 12;597(1-3):19-26. doi: 10.1016/j.ejphar.2008.08.036. Epub 2008 Sep 16.

DDTD, an isoflavone derivative, induces cell apoptosis through the reactive oxygen species/apoptosis signal-regulating kinase 1 pathway in human osteosarcoma cells.

Author information

School of Pharmacy, China Medical University, Taichung, Taiwan.


Osteosarcoma is the most common primary bone tumor associated with childhood and adolescence. In the present study, we investigated the anticancer effect of a new isoflavone derivative, 3',4'-dichloro-3-(3,4-dichlorophenylacetyl)-2,4,6-trihydroxydeoxybenzoin (DDTD) in human osteosarcoma cells. DDTD induced cell apoptosis in human osteosarcoma cell lines (including: U2OS, MG-63, Saos2 and ROS 17/2.8). We found that the accumulation of reactive oxygen species is a critical mediator in DDTD-induced cell death. DDTD induced apoptosis signal-regulating kinase 1 (ASK1) dephosphorylation and its dissociation from 14-3-3. Treatment of osteosarcoma cells with DDTD induced p38 and p53 phosphorylation. Transfection with ASK1, mitogen activated protein kinase (MAPK) kinase (MKK)3/6, and p38 small interfering RNA (siRNA) antagonized the DDTD-induced cell apoptosis. DDTD also triggered the mitochondrial apoptotic pathway, as indicated by a change in Bax/Bcl2 ratio and Caspase-9 activation. Bax knockdown using a Bax siRNA strategy reduced Bax expression and subsequent cell death. In addition, transfection of cells with ASK1, MKK3/6, and p38 siRNA reduced DDTD-induced p38 activation, p53 phosphorylation and Bax expression. These results suggest that DDTD generates reactive oxygen species and activates the ASK1-MKK3/6-p38-p53-Bax pathway to cause osteosarcoma cell death.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center