Format

Send to

Choose Destination
See comment in PubMed Commons below
Int J Radiat Biol. 2008 Sep;84(9):734-41. doi: 10.1080/09553000802317760.

Molecular responses of Jurkat T-cells to 1763 MHz radiofrequency radiation.

Author information

  • 1ILCHUN Genomic Medicine Institute, MRC and Department of Biomedical Sciences, Biochemistry and Molecular Biology, College of Medicine, Seoul, Korea.

Abstract

PURPOSE:

The biological effects of exposure to mobile phone emitted radiofrequency (RF) radiation are the subject of intense study, yet the hypothesis that RF exposure is a potential health hazard remains controversial. In this paper, we monitored cellular and molecular changes in Jurkat human T lymphoma cells after irradiating with 1763 MHz RF radiation to understand the effect on RF radiation in immune cells.

MATERIALS AND METHODS:

Jurkat T-cells were exposed to RF radiation to assess the effects on cell proliferation, cell cycle progression, DNA damage and gene expression. Jurkat cells were exposed to 1763 MHz RF radiation at 10 W/kg specific absorption rate (SAR) and compared to sham exposed cells.

RESULTS:

RF exposure did not produce significant changes in cell numbers, cell cycle distributions, or levels of DNA damage. In genome-wide analysis of gene expressions, there were no genes changed more than two-fold upon RF-radiation while ten genes change to 1.3 approximately 1.8-fold. Among ten genes, two cytokine receptor genes such as chemokine (C-X-C motif) receptor 3 (CXCR3) and interleukin 1 receptor, type II (IL1R2) were down-regulated upon RF radiation, but they were not directly related to cell proliferation or DNA damage responses.

CONCLUSION:

These results indicate that the alterations in cell proliferation, cell cycle progression, DNA integrity or global gene expression was not detected upon 1763 MHz RF radiation under 10 W/kg SAR for 24 h to Jurkat T cells.

PMID:
18821387
DOI:
10.1080/09553000802317760
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis
    Loading ...
    Support Center