Format

Send to

Choose Destination
Cancer Genomics Proteomics. 2008 May-Aug;5(3-4):161-8.

Phosphoproteome and transcriptome analyses of ErbB ligand-stimulated MCF-7 cells.

Author information

1
Computational and Experimental Systems Biology Group, RIKEN Genomic Sciences Center, Yokohama, Kanagawa 230-0045, Japan.

Abstract

Cellular signal transduction pathways and gene expression are tightly regulated to accommodate changes in response to physiological environments. In the current study, molecules were identified that are activated as a result of intracellular signaling and immediately expressed as mRNA in MCF-7 breast cancer cells shortly after stimulation of ErbB receptor ligands, epidermal growth factor (EGF) or heregulin (HRG). For the identification of tyrosine-phosphorylated proteins and expressed genes, a SILAC (stable isotopic labeling using amino acids in cell culture) method and Affymetrix gene expression array system, respectively, were used. Unexpectedly, the overlapping of genes appeared in two experimental datasets was very low for HRG (43 hits in the proteome data, 1,655 in the transcriptome data, and 5 hits common to both datasets), while no overlapping gene was detected for EGF (15 hits in the proteome data, 211 hits in the transcriptome data, and no hits common to both datasets). The HRG overlapping genes included ERBB2, NEDD9, MAPK3, JUP and EPHA2. Biological pathway analysis indicated that HRG-stimulated molecular activation is significantly related to cancer pathways including bladder cancer, chronic myeloid leukemia and pancreatic cancer (p < 0.05). The proteome datasets of EGF and HRG contain molecules that are related to Axon guidance, ErbB signaling and VEGF signaling at a high rate.

PMID:
18820370
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center