Send to

Choose Destination
See comment in PubMed Commons below
Environ Sci Pollut Res Int. 2008 Oct;15(7):565-72. doi: 10.1007/s11356-008-0043-y. Epub 2008 Sep 26.

Integrated testing and intelligent assessment-new challenges under REACH.

Author information

Umweltbundesamt, Ahrenshooper Zeile 1A, 14129 Berlin, Germany.



Due to a number of drawbacks associated with the previous regime for the assessment of new and existing chemicals, the European Union established a new regulation concerning the registration, evaluation, authorisation and restriction of chemicals (REACH). All relevant industrial chemicals must now be assessed. Instead of the authorities, industry itself is responsible for the risk assessment. To achieve better and more efficient assessments while reducing animal testing, all information-standard, non-standard and non-testing-has to be used in an integrated manner. To meet these challenges, the current technical guidance documents for risk assessment of new and existing chemicals had to be updated and extended considerably. This was done by experts in a number of REACH Implementation Projects. This paper presents the most relevant results of the expert Endpoint Working Group on Aquatic Toxicity in order to illustrate the change of paradigm in the future assessment of hazards to the aquatic environment by chemical substances.


REACH sets certain minimum data requirements in order to achieve a high level of protection for human health and the environment. It encourages the assessor to use alternative information instead of or in addition to standard one. This information has to be equivalent to the standard information requirement and adequate to draw overall conclusions with respect to the regulatory endpoints classification and labelling, persistent, bioaccumulative and toxic (PBT) assessment and predicted no-effect concentrations (PNEC) derivation. The main task of the expert working group was to develop guidance on how to evaluate the toxicity of a substance based on integration of information from different sources and of various degrees of uncertainty in a weight of evidence approach.


In order to verify the equivalence and adequacy of different types of information, a flexible sequence of steps was proposed, covering characterisation of the substance, analysis of modes of action, identification of possible analogues, evaluation of existing in vivo and in vitro testing data as well as of QSAR results. Finally, all available data from the different steps have to be integrated to come to an overall conclusion on the toxicity of the substance. This weight of evidence approach is the basis for the development of integrated testing strategies (ITS), in that the available evidence can help to determine subsequent testing steps and is essential for an optimal assessment. Its flexibility helps to meet the different requirements for drawing conclusions on the endpoints classification and labelling, PNEC derivation as well as PBT assessment. The integration of all kinds of additional information in a multi-criteria assessment reduces the uncertainties involved with extrapolation to the ecosystem level. The weight of evidence approach is illustrated by practical examples.


REACH leads to higher challenges in order to make sound decisions with fewer resources, i.e. to move away from extensive standard testing to an intelligent substance-tailored approach. Expert judgement and integrated thinking are key elements of the weight of evidence concept and ITS, potentially leading to better risk assessments. Important sub-lethal effects such as endocrine disruption, which are not covered by the current procedure, can be considered. Conclusions have to be fully substantiated: Risk communication will be an important aspect of future assessments.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center