Investigation of optimizing and translating pH-sensitive pulsed-chemical exchange saturation transfer (CEST) imaging to a 3T clinical scanner

Magn Reson Med. 2008 Oct;60(4):834-41. doi: 10.1002/mrm.21714.

Abstract

Chemical exchange saturation transfer (CEST) MRI provides a sensitive detection mechanism that allows characterization of dilute labile protons usually undetectable by conventional MRI. Particularly, amide proton transfer (APT) imaging, a variant of CEST MRI, has been shown capable of detecting ischemic acidosis, and may serve as a surrogate metabolic imaging marker. For preclinical CEST imaging, continuous-wave (CW) radiofrequency (RF) irradiation is often applied so that the steady state CEST contrast can be reached. On clinical scanners, however, specific absorption rate (SAR) limit and hardware preclude the use of CW irradiation, and instead require an irradiation scheme of repetitive RF pulses (pulsed-CEST imaging). In this work, CW- and pulsed-CEST MRI were systematically compared using a tissue-like pH phantom on an imager capable of both CW and pulsed RF irradiation schemes. The results showed that the maximally obtainable pulsed-CEST contrast is approximately 95% of CW-CEST contrast, and their optimal RF irradiation powers are equal. Moreover, the pulsed-CEST sequence was translated to a 3 Tesla clinical scanner and detected pH contrast from the labile creatine amine groups (1.9 ppm). Furthermore, pilot endogenous APT imaging of normal human volunteers was demonstrated, warranting future APT MRI of stroke patients to elucidate its diagnostic value.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Computer Simulation
  • Hydrogen-Ion Concentration
  • Image Enhancement / methods*
  • Image Interpretation, Computer-Assisted / methods*
  • Magnetic Resonance Imaging / methods*
  • Models, Biological
  • Phantoms, Imaging
  • Reproducibility of Results
  • Sensitivity and Specificity