Format

Send to

Choose Destination
See comment in PubMed Commons below
Cardiovasc Toxicol. 2008 Dec;8(4):161-71. doi: 10.1007/s12012-008-9025-z. Epub 2008 Sep 24.

Molecular analysis of cocaine-induced endothelial dysfunction: role of endothelin-1 and nitric oxide.

Author information

1
Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue SL-83, New Orleans, LA 70112, USA.

Abstract

Cocaine remains the most frequently used illicit substance. Although cocaine-induced atherosclerosis is well documented, its mechanism of action on human vascular endothelial cells has not been determined. Nitric oxide (NO) and endothelin-1 (ET-1) are involved in endothelial cell activation and leukocyte recruitment. The present study monitored the effects of cocaine on NO and ET-1 production in human aortic endothelial cells (HAECs) and the effects of sodium nitroprusside (SNP) and BQ-123 on leukocyte adhesion to HAECs. Acute exposure to cocaine (1 and 3 muM) significantly increased ET-1 production (2-fold) and ET-1 receptor type-A (ET(A)R) protein expression, within 6-12 h. Cocaine exposure for a longer duration (24-72 h) showed a temporal decrease in both NO production and endothelial NO-synthase (eNOS) expression. The cocaine-mediated suppression of NO was ameliorated by co-treatment of cells with the ET(A)R blocker, BQ-123 (5 muM). Furthermore, both short-term (24 h) and long-term (72 h) exposure to cocaine increased endothelial adhesion of monocytes (U937 cells) by 20% and 40%, respectively, which were also suppressed by BQ-123 and SNP co-treatment. These data suggest that a concomitant increase in both ET-1 and ET(A)R expression in cocaine exposed HAECs may enhance signaling via the ET(A)R which decreases eNOS expression and NO production, and ultimately results in endothelial activation and leukocyte adhesion. Our findings implicate a molecular mechanism of action of cocaine and a therapeutic effect of ET(A)R-specific inhibitor in suppressing the cocaine-induced endothelial dysfunction.

PMID:
18813882
DOI:
10.1007/s12012-008-9025-z
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center