Sequential patterns of sex allocation in simultaneous hermaphrodites: do we need models that specifically incorporate this complexity?

Am Nat. 1997 Jul;150(1):73-97. doi: 10.1086/286057.

Abstract

Theoretical and empirical studies of sex allocation usually treat sequential and simultaneous hermaphroditism as distinct and disparate forms of allocation. However, the sexual patterns of numerous species have both sequential (e.g., size-based) and simultaneous components. In most cases, we have drawn from sex allocation theory developed for sequential hermaphrodites to explain ontogenetic changes in allocation and from theory developed for simultaneous hermaphrodites to explain the remaining aspects of these sexual patterns rather than develop a more integrated theory. Here I present the evolutionary stable solution (ESS) to a dynamic statevariable model that explicitly combines the effects of size and simultaneous allocation to male and female function in a dynamic game. The model structure and initial parameter values are based on the sexual pattern of the blue-banded goby, Lythrypnus dalli, a simultaneous hermaphrodite. I then compare the natural patterns of sex allocation in L. dalli with the predictions of the model and with those of a dynamic version of the size advantage model. The integrated model predicted variation in allocation, sex-specific size distributions, and seasonal sex ratio better than the sequential hermaphroditism model did. Indeed, the sequential model, using L. dalli parameter values, predicts a dioecious rather than sequentially hermaphroditic allocation pattern. The comparison of these two models illustrates the disadvantage of drawing from two bodies of theory without a formal integrated framework. Furthermore, the comparison focuses attention on the role of costs of reallocation in the evolution of mixed (or intermediate) sexual patterns.