Format

Send to

Choose Destination
Am Nat. 1997 Jul;150(1):24-47.

Comparisons of physiological performance in sexual and asexual whiptail lizards (genus Cnemidophorus): implications for the role of heterozygosity.

Author information

1
Department of Ecology and Evolutionary Biology, 321 Steinhaus, University of California, Irvine, California 92697-2525, USA.

Abstract

Many asexual animal species are of hybrid origin, with consequent high levels of heterozygosity. Data from some studies suggest that increased heterozygosity may be functionally correlated with superior performance in a variety of fitness-related traits. Thus, hybrid asexual species could be expected to exhibit some degree of heterosis. This spontaneous heterosis hypothesis is tested in a comparative study of asexual and sexual species of the lizard genus Cnemidophorus. Asexual species of the genus are parthenogenetically reproducing hybrids of the sexual species and as a result have high levels of heterozygosity that have persisted since their origins. Five whole-organism physiological traits (burst speed, endurance, maximal exertion, standard metabolic rate, and evaporative water loss rate) were examined in five asexual species and the sexual species that gave rise to them. Trait values for sexual and asexual species were compared using a nonphylogenetic approach and two phylogenetically controlled approaches capable of dealing with reticulate phylogenies. In contrast to the predictions of the heterosis hypothesis, performance for four of the traits in asexual Cnemidophorus was not statistically different than that in their sexual parental species, and asexuals had significantly worse endurance. On the whole, the overall trend appeared to be toward worse performance in asexuals. An obvious interpretation of these results is that heterozygosity and "vigor" need not be functionally related. However, other factors may be counterbalancing possible beneficial effects of heterozygosity, including detrimental epistatic effects resulting from the karyotypically mixed genome of these hybrids, and the accumulation of deleterious mutations in the asexual lineages via Muller's ratchet.

PMID:
18811274
DOI:
10.1086/286055

Supplemental Content

Loading ...
Support Center