Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2008 Nov 21;283(47):32273-82. doi: 10.1074/jbc.M804461200. Epub 2008 Sep 19.

Asymmetry in the lipid affinity of bihelical amphipathic peptides. A structural determinant for the specificity of ABCA1-dependent cholesterol efflux by peptides.

Author information

1
Lipoprotein Metabolism Section, Pulmonary and Vascular Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-1508, USA.

Abstract

ApoA-I contains a tandem array of amphipathic helices with varying lipid affinity, which are critical in its ability to bind and remove lipids from cells by the ABCA1 transporter. In this study, the effect of asymmetry in the lipid affinity of amphipathic helices in a bihelical apoA-I mimetic peptide, 37pA, on lipid efflux by the ABCA1 transporter was examined. Seven peptide variants of 37pA were produced by substituting a varying number of hydrophobic amino acids for alanine on either one or both helices. The 5A peptide with five alanine substitutions in the second helix had decreased helical content compared with 37pA (5A, 12+/-1% helicity; 37pA, 28+/-2% helicity) and showed less self-association but, similar to the parent peptide, was able to readily solubilize phospholipid vesicles. Furthermore, 5A, unlike the parent peptide 37pA, was not hemolytic (37pA, 27+/-2% RBC lysis, 2 h, 18 microm). Finally, the 5A peptide stimulated cholesterol and phospholipid efflux by the ABCA1 transporter with higher specificity (ABCA1-transfected versus untransfected cells) than 37pA (5A, 9.7+/-0.77%, 18 h, 18 microm versus 1.5+/-0.27%, 18 h, 18 microm (p<0.0001); 37pA, 7.4+/-0.85%, 18 h, 18 microm versus 5.8+/-0.20%, 18 h, 18 microm (p=0.03)). In summary, we describe a novel bihelical peptide with asymmetry in the lipid affinity of its helices and properties similar to apoA-I in terms of specificity for cholesterol efflux by the ABCA1 transporter and low cytotoxicity.

PMID:
18805791
PMCID:
PMC2583319
DOI:
10.1074/jbc.M804461200
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center