Format

Send to

Choose Destination
See comment in PubMed Commons below
Vitam Horm. 2008;79:99-143. doi: 10.1016/S0083-6729(08)00404-4.

Molecular mechanisms of adaptation to folate deficiency.

Author information

  • 1Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.

Abstract

Folic acid is an essential vitamin for a wide spectrum of biochemical reactions; however, unlike bacteria and plants, mammals are devoid of folate biosynthesis and thus must obtain this cofactor from exogenous sources. Therefore, folate deficiency may impair the de novo biosynthesis of purines and thymidylate and thereby disrupt DNA and RNA metabolism, homocysteine remethylation, methionine biosynthesis, and subsequent formation of S-adenosylmethionine (the universal methyl donor) which in turn may lead to altered methylation reactions. This impaired folate-dependent intracellular metabolism can lead to several key pathologies including, for example, megaloblastic anemia, homocysteinemia, cardiovascular disease, embryonic defects, in particular neural tube defects (NTDs), congenital heart defects, and possibly cancer. The current review presents and evaluates the up-to-date knowledge regarding the molecular mechanisms underlying cellular survival and/or adaptation to folate deficiency or insufficiency. These mechanisms of adaptation to folate deficiency generally associated with folate uptake, intracellular folate retention, folate-dependent metabolism, and active folate efflux specifically include: (a) Up- or downregulation of various folate-dependent enzymes like dihydrofolate reductase (DHFR) and thymidylate synthase (TS), (b) Cellular retention of folates via polyglutamylation by the enzyme folylpoly-gamma-glutamate synthetase (FPGS), (c) Overexpression of folate influx systems including the reduced folate carrier (RFC), folate receptor (FR) as well as the proton-coupled folate transporter (PCFT), a recently identified intestinal folate influx transporter optimally functioning at the acidic microclimate of the upper intestinal epithelium, (d) Downregulation of ATP-driven folate efflux transporters of the multidrug resistance protein (MRP; ABCC) family and breast cancer resistance protein (BCRP; ABCG2) that belong to the multidrug resistance (MDR) efflux transporters of the ATP-binding cassette (ABC) superfamily. Moreover, the intricate interplay between various components of the adaptive response to folate deprivation is also discussed.

PMID:
18804693
DOI:
10.1016/S0083-6729(08)00404-4
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center