Send to

Choose Destination
Endocrinology. 2009 Jan;150(1):114-25. doi: 10.1210/en.2008-0721. Epub 2008 Sep 18.

Functional characterization and structural modeling of obesity associated mutations in the melanocortin 4 receptor.

Author information

University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Box 289, Hills Road, Cambridge CB2 2QQ, United Kingdom.


Mutations in the melanocortin 4 receptor (MC4R) gene are the most common known cause of monogenic human obesity. The MC4R gene was sequenced in 2000 subjects with severe early-onset obesity. We detected seven different nonsense and 19 nonsynonymous mutations in a total of 94 probands, some of which have been reported previously by others. We functionally characterized the 11 novel obesity associated missense mutations. Seven of these mutants (L54P, E61K, I69T, S136P, M161T, T162I, and I269N) showed impaired cell surface trafficking, reduced level of maximal binding of the radioligand [125I]NDP-MSH, and reduced ability to generate cAMP in response to ligand. Four mutant MC4Rs (G55V, G55D, S136F, and A303T) displayed cell surface expression and agonist binding similar to the wild-type receptor but showed impaired cAMP production, suggesting that these residues are likely to be critical for conformational rearrangement essential for receptor activation. Homology modeling of these mutants using a model of MC4R based on the crystal structure of the beta2-adrenoreceptor was used to provide insights into the possible structural basis for receptor dysfunction. Transmembrane (TM) domains 1, 3, 6, 7, and peripheral helix 8 appear to participate in the agonist-induced conformational rearrangement necessary for coupling of ligand binding to signaling. We conclude that G55V, G55D, S136F, and A303T mutations are likely to strengthen helix-helix interactions between TM1 and TM2, TM3 and TM6, and TM7 and helix 8, respectively, preventing relative movement of these helices during receptor activation. The combination of functional studies and structural modeling of naturally occurring pathogenic mutations in MC4R can provide valuable information regarding the molecular mechanism of MC4R activation and its dysfunction in human disease.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center