Format

Send to

Choose Destination
Photosynth Res. 2008 Oct-Dec;98(1-3):439-48. doi: 10.1007/s11120-008-9352-8. Epub 2008 Sep 9.

The effects of simultaneous RNAi suppression of PsbO and PsbP protein expression in photosystem II of Arabidopsis.

Author information

1
Division of Biochemistry and Molecular Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.

Abstract

Interfering RNA was used to suppress simultaneously the expression of the four genes which encode the PsbO and PsbP proteins of Photosystem II in Arabidopsis (PsbO: At5g66570, At3g50820 and PsbP: At1g06680, At2g30790). A phenotypic series of transgenic plants was obtained that expressed variable amounts of the PsbO proteins and undetectable amounts of the PsbP proteins. Immunological studies indicated that the loss of PsbP expression was correlated with the loss of expression of the PsbQ, D2, and CP47 proteins, while the loss of PsbO expression was correlated with the loss of expression of the D1 and CP43 proteins. Q(A)(-) reoxidation kinetics in the absence of DCMU indicated that the slowing of electron transfer from Q(A)(-) to Q(B) was correlated with the loss of the PsbP protein. Q(A)(-) reoxidation kinetics in the presence of DCMU indicated that charge recombination between Q(A)(-) and donor side components of the photosystem was retarded in all of the mutants. Decreasing amounts of the PsbO protein in the absence of the PsbP component also led to a progressive loss of variable fluorescence yield (F(V)/F(M)). During fluorescence induction, the loss of PsbP was correlated with a more rapid O to J transition and a loss of the J to I transition. These results indicate that the losses of the PsbO and PsbP proteins differentially affect separate protein components and different PS II functions and can do so, apparently, in the same plant.

PMID:
18791808
DOI:
10.1007/s11120-008-9352-8
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center