Format

Send to

Choose Destination
See comment in PubMed Commons below
Genetics. 2008 Oct;180(2):1233-43. doi: 10.1534/genetics.108.089144. Epub 2008 Sep 14.

Metabolomic signatures of inbreeding at benign and stressful temperatures in Drosophila melanogaster.

Author information

  • 1Department of Biological Sciences, University of Aarhus, DK-8000 Aarhus C, Denmark.

Abstract

While the population genetics of inbreeding is fairly well understood, the effects of inbreeding on the physiological and biochemical levels are not. Here we have investigated the effects of inbreeding on the Drosophila melanogaster metabolome. Metabolite fingerprints in males from five outbred and five inbred lines were studied by nuclear magnetic resonance spectroscopy after exposure to benign temperature, heat stress, or cold stress. In both the absence and the presence of temperature stress, metabolite levels were significantly different among inbred and outbred lines. The major effect of inbreeding was increased levels of maltose and decreased levels of 3-hydroxykynurenine and a galactoside [1-O-(4-O-(2-aminoethyl phosphate)-beta-d-galactopyranosyl)-x-glycerol] synthesized exclusively in the paragonial glands of Drosophila species, including D. melanogaster. The metabolomic effect of inbreeding at the benign temperature was related to gene expression data from the same inbred and outbred lines. Both gene expression and metabolite data indicate that fundamental metabolic processes are changed or modified by inbreeding. Apart from affecting mean metabolite levels, inbreeding led to an increased between-line variation in metabolite profiles compared to outbred lines. In contrast to previous observations revealing interactions between inbreeding and environmental stress on gene expression patterns and life-history traits, the effect of inbreeding on the metabolite profile was similar across the different temperature treatments.

PMID:
18791253
PMCID:
PMC2567370
DOI:
10.1534/genetics.108.089144
[PubMed - indexed for MEDLINE]
Free PMC Article

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center