Format

Send to

Choose Destination
J Plant Physiol. 2009 Mar 1;166(4):403-16. doi: 10.1016/j.jplph.2008.06.013. Epub 2008 Sep 11.

Analysis of xyloglucan endotransglycosylase/hydrolase (XTH) genes from allotetraploid (Gossypium hirsutum) cotton and its diploid progenitors expressed during fiber elongation.

Author information

1
Institute of Agrobiotechnology, CERTH, Thermi, Greece.

Abstract

Multiple cellular pathways have been shown to be involved during fiber initiation and elongation stages in the cultivated allotetraploid cotton (Gossypium hirsutum). The cell wall enzymes xyloglucan endotransglycosylase/hydrolases (XTH) have been reported to be associated with the biosynthesis of the cell wall and the growth of cotton fibers, probably regulating the plasticity of the primary cell wall. Among various cotton fiber cDNAs found to be preferentially expressed in cotton fibers, a xyloglucan endotransglycosylase (XTH) cDNA was significantly up-regulated during the elongation stage of cotton fiber development. In the present study, we isolated and characterized genomic clones encoding cotton XTH from cultivated cotton (Gossypium hirsutum) and its diploid progenitors (Gossypium arboreum and Gossypium raimondii), designated GhXTH1-1, GhXTH1-2, GaXTH1 and GrXTH, respectively. In addition, we isolated and characterized, by in silico methods, the putative promoter of XTH1 from Gossypium hirsutum. Sequence analysis revealed more than 50% homology to XTH's at the protein level. DNA gel blot hybridization indicated that at least two copies of GhXTH1 are present in Gossypium hirsutum whereas the diploid progenitor species Gossypium arboreum and Gossypium raimondii has only a single copy. Quantitative real-time PCR and high-resolution melting experiments indicated that in Gossypium hirsutum cultivars, in cotton fibers during early stages of fiber elongation specifically expressing only the GhXTH1-1 gene and expression levels of GhXTH1-1 in fibers varies among cultivars differing in fiber percentage and fiber length.

PMID:
18789555
DOI:
10.1016/j.jplph.2008.06.013
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center