Send to

Choose Destination
See comment in PubMed Commons below
Biotechnol Adv. 2008 Nov-Dec;26(6):591-609. doi: 10.1016/j.biotechadv.2008.08.004. Epub 2008 Aug 22.

Microbial small heat shock proteins and their use in biotechnology.

Author information

  • 1Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 305-701, Republic of Korea.


Small heat shock proteins (sHsps) exist in almost all organisms. Most organisms have more than one sHsp, but their number can be as high as 65, as found in the eukaryote, Vitis vinifera. The function of sHsps is well-known; they confer thermotolerance to cellular cultures and proteins in cellular extracts during prolonged incubations at elevated temperatures. This demonstrates the ability of sHsps to protect cellular proteins, and to maintain cellular viability under conditions of intensive stress, such as heat shock or chemical treatments. sHsps have several properties that distinguish them from heat shock proteins (Hsps): they function as ATP-independent chaperones, require the flexible assembly and reassembly of oligomeric complex structures for their activation, and exhibit a wide range of substrate-binding capacities. Recent studies indicate that sHsps have important biological functions in thermostability, disaggregation, and proteolysis inhibition. These functions can be harnessed for various applications, including nanobiotechnology, proteomics, bioproduction, and bioseparation. In this review, we discuss the properties and diversity of microbial sHsps, as well as their potential uses in the biotechnology industry.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center