Format

Send to

Choose Destination
See comment in PubMed Commons below
Cell Stem Cell. 2008 Sep 11;3(3):340-5. doi: 10.1016/j.stem.2008.08.003.

A high-efficiency system for the generation and study of human induced pluripotent stem cells.

Author information

1
Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Massachusetts General Hospital Center for Regenerative Medicine, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA.

Abstract

Direct reprogramming of human fibroblasts to a pluripotent state has been achieved through ectopic expression of the transcription factors OCT4, SOX2, and either cMYC and KLF4 or NANOG and LIN28. Little is known, however, about the mechanisms by which reprogramming occurs, which is in part limited by the low efficiency of conversion. To this end, we sought to create a doxycycline-inducible lentiviral system to convert primary human fibroblasts and keratinocytes into human induced pluripotent stem cells (hiPSCs). hiPSCs generated with this system were molecularly and functionally similar to human embryonic stem cells (hESCs), demonstrated by gene expression profiles, DNA methylation status, and differentiation potential. While expression of the viral transgenes was required for several weeks in fibroblasts, we found that 10 days was sufficient for the reprogramming of keratinocytes. Using our inducible system, we developed a strategy to induce hiPSC formation at high frequency. Upon addition of doxycycline to hiPSC-derived differentiated cells, we obtained "secondary" hiPSCs at a frequency at least 100-fold greater than the initial conversion. The ability to reprogram cells at high efficiency provides a unique platform to dissect the underlying molecular and biochemical processes that accompany nuclear reprogramming.

PMID:
18786420
PMCID:
PMC3987901
DOI:
10.1016/j.stem.2008.08.003
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center