Send to

Choose Destination
Radiology. 2008 Nov;249(2):601-13. doi: 10.1148/radiol.2492071659. Epub 2008 Sep 9.

Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors.

Author information

Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.



To investigate whether estimates of relative cerebral blood volume (rCBV) in brain tumors, obtained by using dynamic susceptibility-weighted contrast material-enhanced magnetic resonance (MR) imaging vary with choice of data acquisition and postprocessing methods.


Four acquisition methods were used to collect data in 22 high-grade glioma patients, with informed written consent under HIPAA-compliant guidelines approved by the institutional review board. During bolus administration of a standard single dose of gadolinium-based contrast agent (0.1 mmol per kilogram of body weight), one of three acquisition methods was used: gradient-echo (GRE) echo-planar imaging (echo time [TE], 30 msec; flip angle, 90 degrees ; n = 10), small-flip-angle GRE echo-planar imaging (TE, 54 msec; flip angle, 35 degrees ; n = 7), or dual-echo GRE spiral-out imaging (TE, 3.3 and 30 msec; flip angle, 72 degrees ; n = 5). Next, GRE echo-planar imaging (TE, 30 msec; flip angle, 90 degrees ; n = 22) was used to collect data during administration of a second dose of contrast agent (0.2 mmol/kg). Subsequently, six methods of analysis were used to calculate rCBV. Mean rCBV values from whole tumor, tumor hot spots, and contralateral brain were normalized to mean rCBV in normal-appearing white matter.


Friedman two-way analysis of variance and Kruskal-Wallis one-way analysis of variance results indicated that qualitative rCBV values were dependent on acquisition and postprocessing methods for both tumor and contralateral brain. By using the nonparametric Mann-Whitney test, a consistently positive (greater than zero) tumor-contralateral brain rCBV ratio resulted when either the preload-postprocessing correction approach or dual-echo acquisition approach (P < .008 for both methods) was used.


The dependence of tumor rCBV on the choice of acquisition and postprocessing methods is caused by their varying sensitivities to T1 and T2 and/or T2* leakage effects. The preload-correction approach and dual-echo acquisition approach are the most robust choices for the evaluation of brain tumors when the possibility of contrast agent extravasation exists.

Comment in

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center