Send to

Choose Destination
IEEE Trans Med Imaging. 2008 Sep;27(9):1230-41. doi: 10.1109/TMI.2008.920619.

Optimal wavelet transform for the detection of microaneurysms in retina photographs.

Author information

INSTITUT TELECOM, TELECOM Bretag, F-29200 Brest, France.


In this paper, we propose an automatic method to detect microaneurysms in retina photographs. Microaneurysms are the most frequent and usually the first lesions to appear as a consequence of diabetic retinopathy. So, their detection is necessary for both screening the pathology and follow up (progression measurement). Automating this task, which is currently performed manually, would bring more objectivity and reproducibility. We propose to detect them by locally matching a lesion template in subbands of wavelet transformed images. To improve the method performance, we have searched for the best adapted wavelet within the lifting scheme framework. The optimization process is based on a genetic algorithm followed by Powell's direction set descent. Results are evaluated on 120 retinal images analyzed by an expert and the optimal wavelet is compared to different conventional mother wavelets. These images are of three different modalities: there are color photographs, green filtered photographs, and angiographs. Depending on the imaging modality, microaneurysms were detected with a sensitivity of respectively 89.62%, 90.24%, and 93.74% and a positive predictive value of respectively 89.50%, 89.75%, and 91.67%, which is better than previously published methods.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for IEEE Engineering in Medicine and Biology Society Icon for PubMed Central
Loading ...
Support Center