Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2008 Sep 3;28(36):8885-96. doi: 10.1523/JNEUROSCI.2693-08.2008.

Increasing spectrotemporal sound density reveals an octave-based organization in cat primary auditory cortex.

Author information

  • 1Integrative and Adaptive Neurobiology Laboratory, Unité Mixte de Recherche 6149, Université de Provence-Centre National de la Recherche Scientifique, Centre St Charles, 13331 Marseille Cedex 03, France.

Abstract

Auditory neurons are likely adapted to process complex stimuli, such as vocalizations, which contain spectrotemporal modulations. However, basic properties of auditory neurons are often derived from tone pips presented in isolation, which lack spectrotemporal modulations. In this context, it is unclear how to deduce the functional role of auditory neurons from their tone pip-derived tuning properties. In this study, spectrotemporal receptive fields (STRFs) were obtained from responses to multi-tone stimulus ensembles differing in their average spectrotemporal density (i.e., number of tone pips per second). STRFs for different stimulus densities were derived from multiple single-unit activity (MUA) and local field potentials (LFPs), simultaneously recorded in primary auditory cortex of cats. Consistent with earlier studies, we found that the spectral bandwidth was narrower for MUA compared with LFPs. Both neural firing rate and LFP amplitude were reduced when the density of the stimulus ensemble increased. Surprisingly, we found that increasing the spectrotemporal sound density revealed with increasing clarity an over-representation of response peaks at frequencies of approximately 3, 5, 10, and 20 kHz, in both MUA- and LFP-derived STRFs. Although the decrease in spectral bandwidth and neural activity with increasing stimulus density can likely be accounted for by forward suppression, the mechanisms underlying the over-representation of the octave-spaced response peaks are unclear. Plausibly, the over-representation may be a functional correlate of the periodic pattern of corticocortical connections observed along the tonotopic axis of cat auditory cortex.

PMID:
18768682
DOI:
10.1523/JNEUROSCI.2693-08.2008
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Miscellaneous

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center