Send to

Choose Destination
Int J Pharm. 2008 Nov 19;364(1):27-35. doi: 10.1016/j.ijpharm.2008.07.030. Epub 2008 Aug 6.

Pharmacokinetics and brain uptake of diazepam after intravenous and intranasal administration in rats and rabbits.

Author information

Drug Delivery Systems Research Laboratory, College of Pharmacy and Allied Health Professions, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, USA.


The purpose of this study was to investigate the plasma pharmacokinetics and brain uptake of a lipophilic benzodiazepine anticonvulsant, diazepam in New Zealand white rabbits and Sprague-Dawley rats to evaluate the possible absorption pathways after intravenous and intranasal administration. The intranasal formulation was prepared by dissolving DZ and 1% sodium glycocholate into microemulsion system composed of 15% ethyl laurate, 25% Labrasol, 37.5% Transcutol P, 12.5% ethanol, and 10% water. Diazepam was administered intravenously (1 mg/kg) or intranasally (2 mg/kg) to rats and rabbits. Drug concentrations in the plasma and six different regions of the brain tissues, i.e., olfactory bulb, olfactory tract, anterior, middle, and posterior segments of cerebrum and cerebellum were analyzed by LC/MS method after solid phase extraction. After i.n. administration, DZ was rapidly absorbed into the systemic circulation, and readily and homogeneously distributed into the different regions of brain tissues with a t(max) of 5 and 10 min in rats and rabbits, respectively. The bioavailability of DZ in rat plasma (68.4%) and brain (67.7%) were 32-47% higher than those observed in rabbit plasma (51.6%) and brain (45.9%). The AUC(brain)/AUC(plasma) ratios in rabbits after i.n. administration (3.77+/-0.17) were slightly lower than from i.v. administration (4.23+/-0.08). However, in rats the AUC(brain)/AUC(plasma) ratios after i.v. (3.03+/-0.07) and i.n. (3.00+/-0.32) administration were nearly identical. The plasma pharmacokinetic and distribution studies in the two animal models clearly showed that lipophilic DZ molecules reached the brain predominantly from the blood by crossing the blood-brain barrier after i.n. administration with no significant direct nose-to-brain transport via olfactory epithelium.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center