Send to

Choose Destination
See comment in PubMed Commons below
Tissue Eng Part A. 2009 Jan;15(1):187-95. doi: 10.1089/ten.tea.2007.0140.

Three-dimensional engineered bone from bone marrow stromal cells and their autogenous extracellular matrix.

Author information

Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.


Most bone tissue-engineering research uses porous three-dimensional (3D) scaffolds for cell seeding. In this work, scaffold-less 3D bone-like tissues were engineered from rat bone marrow stromal cells (BMSCs) and their autogenous extracellular matrix (ECM). The BMSCs were cultured on a 2D substrate in medium that induced osteogenic differentiation. After reaching confluence and producing a sufficient amount of their own ECM, the cells contracted their tissue monolayer around two constraint points, forming scaffold-less cylindrical engineered bone-like constructs (EBCs). The EBCs exhibited alizarin red staining for mineralization and alkaline phosphatase activity and contained type I collagen. The EBCs developed a periosteum characterized by fibroblasts and unmineralized collagen on the periphery of the construct. Tensile tests revealed that the EBCs in culture had a tangent modulus of 7.5 +/- 0.5 MPa at 7 days post-3D construct formation and 29 +/- 9 MPa at 6 weeks after construct formation. Implantation of the EBCs into rats 7 days after construct formation resulted in further bone development and vascularization. Tissue explants collected at 4 weeks contained all three cell types found in native bone: osteoblasts, osteocytes, and osteoclasts. The resulting engineered tissues are the first 3D bone tissues developed without the use of exogenous scaffolding.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon Icon for MLibrary (Deep Blue)
    Loading ...
    Support Center