Format

Send to

Choose Destination
See comment in PubMed Commons below
Environ Sci Pollut Res Int. 2008 Oct;15(7):573-83. doi: 10.1007/s11356-008-0039-7. Epub 2008 Aug 28.

Dissipation of four forest-use herbicides at high latitudes.

Author information

1
Department of Forest Science, Oregon State University, Corvallis, OR 97331, USA. mike.newton@oregonstate.edu

Abstract

BACKGROUND, AIM, AND SCOPE:

Large-scale deforestation is occurring in subarctic North America following clearing by salvage logging or insect attack. Numerous shrubs, herbs, and deciduous tree species tend to dominate areas on which stands of white spruce have grown. In the absence of economically advantageous mechanical methods, several herbicides have value in efforts to reforest by planting white spruce. Glyphosate, imazapyr, triclopyr, and hexazinone are all capable of selectively removing many competing species, but there is concern about whether they would degrade naturally or persist owing to the frigid climate.

MATERIALS AND METHODS:

We established test plots with all four herbicides in upland and river bottom sites at 65 degrees N and 58 degrees N latitudes. The northern site has extremely cold winters, with soils that freeze to a depth of 1-2 m, and precipitation of 275 mm/year. The southern site has heavy rain and snowfall, amounting to 2,250 mm/year evenly distributed. Soil seldom freezes deeply. On each test plot, one of the four herbicides was applied at twice the normal operational use rate to facilitate detection. They were applied at the normal timing, with hexazinone, imazapyr, and triclopyr applied in June and glyphosate applied in fall. Soils were sampled immediately after treatment and those samples used as references for dissipation data gathered over the next 11-14 months from soil 0- to 15- and 15- to 45-cm depths.

RESULTS:

Dissipation rates did not follow first-order rates because freezing conditions slowed most microbial activity. All products dissipated to close to or below detection limits within the time of the study. Dissipation from vegetation was substantially more rapid and depended on the nature of the plants treated as well as the product used. While soil residues dissipated more slowly than in temperate regions, they did display consistent dissipation patterns during above-freezing conditions and also the influence of microbial activity. Mobility was very limited with all products but hexazinone.

DISCUSSION:

These products dissipate during summer in high latitudes much as they would in temperate climates. Winter changes are small, but are not unlike some changes reported elsewhere under freezing conditions. Unlike many other studies, soil water did not influence dissipation heavily, but the high latitude and semi-arid climate also did not create severely droughty soils. Residues in plants were much higher than those in soils, but denatured the vegetation quickly, leading to unsuitability for forage in any case.

CONCLUSIONS:

Low toxicity of these products and their metabolites combined with consistent dissipation and low mobility suggest that toxic hazard of their use at high latitudes need not be a matter of serious concern to humans, terrestrial wildlife, or aquatic systems. They are safe for use in management and rehabilitation of boreal forests when used properly.

RECOMMENDATIONS AND PERSPECTIVES:

Dissipation at rates approaching those in warmer climates offer a hypothesis that microflora native to high latitudes may be adapted to destruction of such molecules at lower temperatures than may be indicated by experiments with microflora adapted to warmer climates. Residues pose no observable risk to wildlife or humans in the area of use when products are applied properly.

PMID:
18751747
DOI:
10.1007/s11356-008-0039-7
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center