Format

Send to

Choose Destination
See comment in PubMed Commons below
FASEB J. 2008 Dec;22(12):4190-200. doi: 10.1096/fj.07-099036. Epub 2008 Aug 26.

Effect of calpain and proteasome inhibition on Ca2+-dependent proteolysis and muscle histopathology in the mdx mouse.

Author information

1
Santhera Pharmaceuticals (Switzerland) Ltd, Hammerstrasse 47, CH-4410 Liestal, Switzerland.

Abstract

Dystrophin deficiency is the underlying molecular cause of progressive muscle weakness observed in Duchenne muscular dystrophy (DMD). Loss of functional dystrophin leads to elevated levels of intracellular Ca(2+), a key step in the cellular pathology of DMD. The cysteine protease calpain is activated in dystrophin-deficient muscle, and its inhibition is regarded as a potential therapeutic approach. In addition, previous work has shown that the ubiquitin-proteasome system also contributes to muscle protein breakdown in dystrophic muscle and, therefore, also qualifies as a potential target for therapeutic intervention in DMD. The relative contribution of calpain- and proteasome-mediated proteolysis induced by increased Ca(2+) levels was characterized in cultured muscle cells and revealed initial Ca(2+) influx-dependent calpain activity and subsequent Ca(2+)-independent activity of the ubiquitin-proteasome system. We then set out to optimize novel small-molecule inhibitors that inhibit both calpain as well as the 20S proteasome in a cellular system with impaired Ca(2+) homeostasis. On administration of such inhibitors to mdx mice, quantitative histological parameters improved significantly, in particular with compounds strongly inhibiting the 20S proteasome. To investigate the role of calpain inhibition without interfering with the ubiquitin-proteasome system, we crossed mdx mice with transgenic mice, overexpressing the endogenous calpain inhibitor calpastatin. Although our data show that proteolysis by calpain is strongly inhibited in the transgenic mdx mouse, this calpain inhibition did not ameliorate muscle histology. Our results indicate that inhibition of the proteasome rather than calpain is required for histological improvement of dystrophin-deficient muscle. In conclusion, we have identified novel proteasome inhibitors that qualify as potential candidates for pharmacological intervention in muscular dystrophy.

PMID:
18728218
DOI:
10.1096/fj.07-099036
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Support Center