Format

Send to

Choose Destination
See comment in PubMed Commons below
Gastroenterology. 2008 Oct;135(4):1322-32. doi: 10.1053/j.gastro.2008.07.012. Epub 2008 Jul 17.

E2F1 inhibits c-Myc-driven apoptosis via PIK3CA/Akt/mTOR and COX-2 in a mouse model of human liver cancer.

Author information

1
Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4262, USA.

Abstract

BACKGROUND & AIMS:

Resistance to apoptosis is essential for cancer growth. We previously reported that hepatic coexpression of c-Myc and E2F1, 2 key regulators of proliferation and apoptosis, enhanced hepatocellular carcinoma (HCC) development in transgenic mice. Here, we investigated the molecular mechanisms underlying oncogenic cooperation between c-Myc and E2F1 in relationship to human liver cancer.

METHODS:

Activation of pro- and antiapoptotic cascades was assessed by immunoblotting in experimental HCC models and in human HCC. Effect of antisense oligodeoxy nucleotides against c-Myc and E2F1 was studied in human HCC cell lines. Suppression of catalytic subunit p110alpha of phosphatidylinositol 3-kinase (PIK3CA)/Akt, mammalian target of rapamycin (mTOR), and cyclooxygenase (COX)-2 pathways was achieved by pharmacologic inhibitors and small interfering RNA in human and mouse HCC cell lines.

RESULTS:

Coexpression with E2F1 did not increase proliferation triggered by c-Myc overexpression but conferred a strong resistance to c-Myc-initiated apoptosis via concomitant induction of PIK3CA/Akt/mTOR and c-Myb/COX-2 survival pathways. COX-2 was not induced in c-Myc and rarely in E2F1 tumors. In human HCC, PIK3CA/Akt/mTOR and c-Myb/COX-2 pathways were similarly activated, with levels of PIK3CA/Akt, mTOR, and c-Myb being inversely associated with patients' survival length. Silencing c-Myc and E2F1 reduced PIK3CA/Akt and mTOR and completely abolished c-Myb and COX-2 expression in human HCC cell lines. Finally, simultaneous inhibition of PIK3CA/Akt/mTOR and COX-2 activity in in vitro models caused massive apoptosis of neoplastic hepatocytes.

CONCLUSIONS:

E2F1 may function as a critical antiapoptotic factor both in human and in rodent liver cancer through its ability to counteract c-Myc-driven apoptosis via activation of PIK3CA/Akt/mTOR and c-Myb/COX-2 pathways.

PMID:
18722373
PMCID:
PMC2614075
DOI:
10.1053/j.gastro.2008.07.012
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center