Send to

Choose Destination
See comment in PubMed Commons below
FEBS J. 2008 Oct;275(19):4850-62. doi: 10.1111/j.1742-4658.2008.06623.x. Epub 2008 Aug 21.

Probing the rotor subunit interface of the ATP synthase from Ilyobacter tartaricus.

Author information

Institute of Microbiology, Eidgenössische Technische Hochschule, Zurich, Switzerland.


The interaction between the c(11)ring and the gammaepsilon complex, forming the rotor of the Ilyobacter tartaricus ATP synthase, was probed by surface plasmon resonance spectroscopy and in vitro reconstitution analysis. The results provide, for the first time, a direct and quantitative assessment of the stability of the rotor. The data indicated very tight binding between the c(11)ring and the gammaepsilon complex, with an apparent K(d) value of approximately 7.4nm. The rotor assembly was primarily dependent on the interaction of the cring with the gammasubunit, and binding of the cring to the free epsilon subunit was not observed. Mutagenesis of selected conserved amino acid residues of all three rotor components (cR45, cQ46, gammaE204, gammaF203 and epsilonH38) severely affected rotor assembly. The interaction kinetics between the gammaepsilon complex and c(11)ring mutants suggested that the assembly of the c(11)gammaepsiloncomplex was governed by interactions of low and high affinity. Low-affinity binding was observed between the polar loops of the cring subunits and the bottom part of the gamma subunit. High-affinity interactions, involving the two residues gammaE204 and epsilonH38, stabilized the holo-c(11)gammaepsilon complex. NMR experiments indicated the acquisition of conformational order in otherwise flexible C- and N-terminal regions of the gamma subunit on rotor assembly. The results of this study suggest that docking of the central stalk of the F(1)complex to the rotor ring of F(o) to form tight, but reversible, contacts provides an explanation for the relative ease of dissociation and reconstitution of F(1)F(o)complexes.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center