Format

Send to

Choose Destination
Planta. 2008 Oct;228(5):789-801. doi: 10.1007/s00425-008-0781-6. Epub 2008 Aug 21.

Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions.

Author information

1
Plant Research International, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.

Abstract

Colonisation of maize roots by arbuscular mycorrhizal (AM) fungi leads to the accumulation of apocarotenoids (cyclohexenone and mycorradicin derivatives). Other root apocarotenoids (strigolactones) are involved in signalling during early steps of the AM symbiosis but also in stimulation of germination of parasitic plant seeds. Both apocarotenoid classes are predicted to originate from cleavage of a carotenoid substrate by a carotenoid cleavage dioxygenase (CCD), but the precursors and cleavage enzymes are unknown. A Zea mays CCD (ZmCCD1) was cloned by RT-PCR and characterised by expression in carotenoid accumulating E. coli strains and analysis of cleavage products using GC-MS. ZmCCD1 efficiently cleaves carotenoids at the 9, 10 position and displays 78% amino acid identity to Arabidopsis thaliana CCD1 having similar properties. ZmCCD1 transcript levels were shown to be elevated upon root colonisation by AM fungi. Mycorrhization led to a decrease in seed germination of the parasitic plant Striga hermonthica as examined in a bioassay. ZmCCD1 is proposed to be involved in cyclohexenone and mycorradicin formation in mycorrhizal maize roots but not in strigolactone formation.

PMID:
18716794
DOI:
10.1007/s00425-008-0781-6
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center