Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12307-12. doi: 10.1073/pnas.0801302105. Epub 2008 Aug 20.

Heparan sulfate regulates ephrin-A3/EphA receptor signaling.

Author information

1
Sanford Children's Health Research Center, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.

Abstract

Increasing evidence indicates that many signaling pathways involve not only ligands and receptors but also various types of coreceptors and matrix components as additional layers of regulation. Signaling by Eph receptors and their ephrin ligands plays a key role in a variety of biological processes, such as axon guidance and topographic map formation, synaptic plasticity, angiogenesis, and cancer. Little is known about whether the ephrin-Eph receptor signaling system is subject to such additional layers of regulation. Here, we show that ephrin-A3 binds to heparan sulfate, and that the presence of cell surface heparan sulfate is required for the full biological activity of ephrin-A3. Among the ephrins tested, including ephrin-A1, -A2, -A5, -B1, and -B2, only ephrin-A3 binds heparin or heparan sulfate. Ephrin-A3-dependent EphA receptor activation is reduced in mutant cells that are defective in heparan sulfate synthesis, in wild-type cells from which cell surface heparan sulfate has been removed, and in the hippocampus of conditional knockout mice defective in heparan sulfate synthesis. Ephrin-A3-dependent cell rounding is impaired in CHO cells lacking heparan sulfate, and cortical neurons lacking heparan sulfate exhibit impaired growth cone collapse. In contrast, cell rounding and growth cone collapse in response to ephrin-A5, which does not bind heparan sulfate, are not affected by the absence of heparan sulfate. These results show that heparan sulfate modulates ephrin/Eph signaling and suggest a physiological role for heparan sulfate proteoglycans in the regulation of ephrin-A3-dependent biological processes.

PMID:
18715996
PMCID:
PMC2527907
DOI:
10.1073/pnas.0801302105
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center