Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12474-9. doi: 10.1073/pnas.0805350105. Epub 2008 Aug 18.

B-vitamin deficiency causes hyperhomocysteinemia and vascular cognitive impairment in mice.

Author information

Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA 02111-1524, USA.


In older adults, mildly elevated plasma total homocysteine (hyperhomocysteinemia) is associated with increased risk of cognitive impairment, cerebrovascular disease, and Alzheimer's disease, but it is uncertain whether this is due to underlying metabolic, neurotoxic, or vascular processes. We report here that feeding male C57BL6/J mice a B-vitamin-deficient diet for 10 weeks induced hyperhomocysteinemia, significantly impaired spatial learning and memory, and caused a significant rarefaction of hippocampal microvasculature without concomitant gliosis and neurodegeneration. Total hippocampal capillary length was inversely correlated with Morris water maze escape latencies (r = -0.757, P < 0.001), and with plasma total homocysteine (r = -0.631, P = 0.007). Feeding mice a methionine-rich diet produced similar but less pronounced effects. Our findings suggest that cerebral microvascular rarefaction can cause cognitive dysfunction in the absence of or preceding neurodegeneration. Similar microvascular changes may mediate the association of hyperhomocysteinemia with human age-related cognitive decline.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center