Format

Send to

Choose Destination
See comment in PubMed Commons below
J Cell Biol. 2008 Aug 25;182(4):675-84. doi: 10.1083/jcb.200711066. Epub 2008 Aug 18.

E2-25K/Hip-2 regulates caspase-12 in ER stress-mediated Abeta neurotoxicity.

Author information

1
School of Biological Sciences, Seoul National University, Seoul, Korea.

Abstract

Amyloid-beta (Abeta) neurotoxicity is believed to contribute to the pathogenesis of Alzheimer's disease (AD). Previously we found that E2-25K/Hip-2, an E2 ubiquitin-conjugating enzyme, mediates Abeta neurotoxicity. Here, we report that E2-25K/Hip-2 modulates caspase-12 activity via the ubiquitin/proteasome system. Levels of endoplasmic reticulum (ER)-resident caspase-12 are strongly up-regulated in the brains of AD model mice, where the enzyme colocalizes with E2-25K/Hip-2. Abeta increases expression of E2-25K/Hip-2, which then stabilizes caspase-12 protein by inhibiting proteasome activity. This increase in E2-25K/Hip-2 also induces proteolytic activation of caspase-12 through its ability to induce calpainlike activity. Knockdown of E2-25K/Hip-2 expression suppresses neuronal cell death triggered by ER stress, and thus caspase-12 is required for the E2-25K/Hip-2-mediated cell death. Finally, we find that E2-25K/Hip-2-deficient cortical neurons are resistant to Abeta toxicity and to the induction of ER stress and caspase-12 expression by Abeta. E2-25K/Hip-2 is thus an essential upstream regulator of the expression and activation of caspase-12 in ER stress-mediated Abeta neurotoxicity.

PMID:
18710920
PMCID:
PMC2518707
DOI:
10.1083/jcb.200711066
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center