Send to

Choose Destination
Am Nat. 2002 Aug;160(2):195-204. doi: 10.1086/341017.

The effective size of annual plant populations: the interaction of a seed bank with fluctuating population size in maintaining genetic variation.

Author information

Department of Biology and Center for Conservation Biology, University of California, Riverside, California 92521, USA.


Many annual plant populations undergo dramatic fluctuations in size. Such fluctuations can result in the loss of genetic variability. Here I formalize the potential for a seed bank to buffer against such genetic loss. The average time to seed germination (T) defines the generation time of "annuals" with a seed bank, and assuming random seed germination, I show that, under otherwise ideal conditions, a population's effective size (Ne) equals NT, where N is the number of adult plants. This result supports the general principle that lengthening the prereproductive period increases Ne. When adult numbers vary, Ne at any time depends on N and on the numbers contributing to the seed bank in previous seasons. Averaging these effects over time gives Ne approximately Nh + (T - 1)Na, where Nh and Na are the harmonic and arithmetic means of the adult population. Thus if T >> 1, Ne is determined primarily by Na. Simulations showed that until fluctuations in N are large (>25x) this relationship is accurate. I extended the theory to incorporate a selfing rate (S) and reproductive variance (I) through seed production (k), outcrossed pollen (m), and variation in selfing rate: Ne = NT(1 -S/2)/(1 + I) = NT/[1 + FIS)(1 + I)]. Reproductive variance (I) equals [Ik(1 + S)2 + IM(1 - S)2 + 2(1 - S2)Ikm = S2IS(1 + Ik)]/4, , where Ij is the standardized variance (Vj/j2) of factor j and Ikm is the standardized covariance between k and m. These results are applicable to other organisms with a similar life history, such as freshwater crustaceans with diapausing eggs (e.g., tadpole shrimp, clam shrimp, and fairy shrimp) and other semelparous species with discrete breeding seasons and a variable maturation time (e.g., Pacific salmon).


Supplemental Content

Full text links

Icon for University of Chicago Press
Loading ...
Support Center