Send to

Choose Destination
See comment in PubMed Commons below
Am Nat. 2002 Jun;159(6):624-44. doi: 10.1086/339997.

Artificial evolution of life history and behavior.

Author information

  • 1Department of Fisheries and Marine Biology, University of Bergen, P.O. Box 7800, N-5020 Bergen, Norway.


We present an individual-based model that uses artificial evolution to predict fit behavior and life-history traits on the basis of environmental data and organism physiology. Our main purpose is to investigate whether artificial evolution is a suitable tool for studying life history and behavior of real biological organisms. The evolutionary adaptation is founded on a genetic algorithm that searches for improved solutions to the traits under scrutiny. From the genetic algorithm's "genetic code," behavior is determined using an artificial neural network. The marine planktivorous fish Müller's pearlside (Maurolicus muelleri) is used as the model organism because of the broad knowledge of its behavior and life history, by which the model's performance is evaluated. The model adapts three traits: habitat choice, energy allocation, and spawning strategy. We present one simulation with, and one without, stochastic juvenile survival. Spawning pattern, longevity, and energy allocation are the life-history traits most affected by stochastic juvenile survival. Predicted behavior is in good agreement with field observations and with previous modeling results, validating the usefulness of the presented model in particular and artificial evolution in ecological modeling in general. The advantages, possibilities, and limitations of this modeling approach are further discussed.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for University of Chicago Press
    Loading ...
    Support Center