A literature review of electronic portal imaging for radiotherapy dosimetry

Radiother Oncol. 2008 Sep;88(3):289-309. doi: 10.1016/j.radonc.2008.07.008. Epub 2008 Aug 14.

Abstract

Electronic portal imaging devices (EPIDs) have been the preferred tools for verification of patient positioning for radiotherapy in recent decades. Since EPID images contain dose information, many groups have investigated their use for radiotherapy dose measurement. With the introduction of the amorphous-silicon EPIDs, the interest in EPID dosimetry has been accelerated because of the favourable characteristics such as fast image acquisition, high resolution, digital format, and potential for in vivo measurements and 3D dose verification. As a result, the number of publications dealing with EPID dosimetry has increased considerably over the past approximately 15 years. The purpose of this paper was to review the information provided in these publications. Information available in the literature included dosimetric characteristics and calibration procedures of various types of EPIDs, strategies to use EPIDs for dose verification, clinical approaches to EPID dosimetry, ranging from point dose to full 3D dose distribution verification, and current clinical experience. Quality control of a linear accelerator, pre-treatment dose verification and in vivo dosimetry using EPIDs are now routinely used in a growing number of clinics. The use of EPIDs for dosimetry purposes has matured and is now a reliable and accurate dose verification method that can be used in a large number of situations. Methods to integrate 3D in vivo dosimetry and image-guided radiotherapy (IGRT) procedures, such as the use of kV or MV cone-beam CT, are under development. It has been shown that EPID dosimetry can play an integral role in the total chain of verification procedures that are implemented in a radiotherapy department. It provides a safety net for simple to advanced treatments, as well as a full account of the dose delivered. Despite these favourable characteristics and the vast range of publications on the subject, there is still a lack of commercially available solutions for EPID dosimetry. As strategies evolve and commercial products become available, EPID dosimetry has the potential to become an accurate and efficient means of large-scale patient-specific IMRT dose verification for any radiotherapy department.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Dose-Response Relationship, Radiation
  • Humans
  • Imaging, Three-Dimensional
  • Posture / physiology*
  • Radiometry / instrumentation*
  • Radiometry / methods
  • Radiotherapy Dosage*
  • Radiotherapy, Computer-Assisted / instrumentation*
  • Radiotherapy, Computer-Assisted / methods
  • Radiotherapy, Conformal / instrumentation*
  • Radiotherapy, Conformal / methods
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Tomography, X-Ray Computed
  • X-Ray Intensifying Screens